The human lung is a highly complex tubular organ, whose main function is the gas exchange between blood and breathed air. In contains a large number of specialized cell-types of epithelial, endothelial, neuronal, stromal and immune cells that are necessary for normal organ function and structural integrity. To understand how this cell heterogeneity develops to create a healthy mature lung, we focused on the 1st trimester of gestation and applied state of art technologies to capture the gene expression profiles of all the cells in the developing organ, in time and space.
More information is available in the original publication:
A. Sountoulidis, S.M. Salas, E. Braun, C. Avenel, J. Bergenstråhle, M. Vicari, P. Czarnewski, J. Theelke, A. Liontos, X. Abalo, Ž. Andrusivová, M. Asp, X. Li, L. Hu, S. Sariyar, A.M. Casals, B. Ayoglu, A. Firsova, J. Michaëlsson, E. Lundberg, C. Wählby, E. Sundström, S. Linnarsson, J. Lundeberg, M. Nilsson, C. Samakovlis. Developmental origins of cell heterogeneity in the human lung. BioRxiv doi: https://doi.org/10.1101/2022.01.11.475631
TissUUmaps interactive viewer:
Single-cell RNA-sequencing
UMAP representation of single-cell clusters and sub-clusters, gene expression and metadata.
In situ sequencing data (ISS) - TissUUmaps interactive viewer:
pcw 5 pcw 6 pcw 13
In situ sequencing data. Spot location + identity, per bin pie chart view of cell type probabilities and imputed genes.
SCRINSHOT data - TissUUmaps interactive viewer:
pcw 6 pcw 8 pcw 11 pcw 14
SCRINSHOT data. Spot location + identity.
Spatial Transcriptomics data - TissUUmaps interactive viewer:
pcw 6 pcw 8 pcw 10 pcw 11
Per gene or pie chart view of gene expression.